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1. Introduction

The aim of this paper is to give an introduction to Heegaard Floer
homology [24] for closed oriented 3-manifolds. We will also discuss a
related Floer homology invariant for knots in S3, [31], [34].

Let Y be an oriented closed 3-manifold. The simplest version of
Heegaard Floer homology associates to Y a finitely generated Abelian
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Figure 1. A handlebody of genus 4.

group ĤF (Y ). This homology is defined with the help of Heegaard
diagrams and Lagrangian Floer homology. Variants of this construction
give related invariants HF +(Y ), HF−(Y ), HF∞(Y ).

While its construction is very different, Heegaard Floer homology
is closely related to Seiberg-Witten Floer homology [10, 15, 17], and
instanton Floer homology [3, 4, 7]. In particular it grew out of our
attempt to find a more topological description of Seiberg-Witten theory
for three-manifolds.

2. Heegaard decompositions and diagrams

Let Y be a closed oriented three-manifold. In this section we de-
scribe decompositions of Y into more elementary pieces, called handle-
bodies.

A genus g handlebody U is diffeomorphic to a regular neighborhood
of a bouquet of g circles in R3, see Figure 1. The boundary of U is
an oriented surface with genus g. If we glue two such handlebodies
together along their common boundary, we get a closed 3-manifold

Y = U0 ∪Σ U1

oriented so that Σ is the oriented boundary of U0. This is called a
Heegaard decomposition for Y .

2.1. Examples. The simplest example is the (genus 0) decompo-
sition of S3 into two balls. A similar example is given by taking a
tubular neighborhood of the unknot in S3. Since the complement is
also a solid torus, we get a genus 1 Heegaard decomposition of S3.
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Other simple examples are given by lens spaces. Take

S3 = {(z, w) ∈ C2| |z2| + |w|2 = 1}

Let (p, q) = 1, 1 ≤ q < p. The lens space L(p.q) is given by modding
out S3 with the free Z/p action

f : (z, w) −→ (αz, αqw),

where α = e2πi/p. Clearly π1(L(p, q)) = Z/p. Note also that the
solid tori U0 = |z| ≤ 1

2 , U1 = |z| ≥ 1
2 are preserved by the action,

and their quotients are also solid tori. This gives a genus 1 Heegaard
decomposition of L(p, q).

2.2. Existence of Heegaard decompositions. While the small
genus examples might suggest that 3-manifolds that admit Heegaard
decompositions are special, in fact the opposite is true:

Theorem 2.1. ([39]) Let Y be an oriented closed three-dimensional
manifold. Then Y admits a Heegaard decomposition.

Proof. Start with a triangulation of Y . The union of the vertecies
and the edges gives a graph in Y . Let U0 be a small neighborhood of
this graph. In other words replace each vertex by ball, and each edge by
solid cylinder. By definition U0 is a handlebody. It is easy to see that
Y −U0 is also a handlebody, given by a regular neighborhood of a graph
on the centers of the triangles and tetrahedrons in the triangulation.

2.3. Stabilizations. It follows from the above proof that the same
three-manifold admits lots of different Heegaard decompositions. In
particular, given a Heegaard decomposition Y = U0 ∪Σ U1 of genus g,
we can define another decomposition of genus g + 1, by choosing two
points in Σ and connecting them by a small unknotted arc γ in U1.
Let U ′

0 be the union of U0 and a small tubular neghborhood N of γ.
Similarly let U ′

1 = U1 − N . The new decomposition

Y = U ′
0 ∪Σ′ U ′

1

is called the stabilization of Y = U0∪ΣU1. Clearly g(Σ′) = g(Σ)+1. For
an easy example note that the genus 1 decomposition of S3 described
earlier is the stabilization of the genus 0 decomposition.

According to a theorem of Singer [39], any two Heegaard decom-
positions can be connected by stabilizations (and destabilizations):
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Theorem 2.2. Let (Y, U0, U1) and (Y, U ′
0, U

′
1) be two Heegaard de-

compositions of Y with genus g and g′ respectively. Then for k large
enough the (k−g′)-fold stabilization of the first decomposition is diffeo-
morphic with the (k− g)-fold stabilization of the second decomposition.

2.4. Heegaard diagrams. In view of Theorem 2.2 if we find an
invariant for Heegaard decompositions with the property that it does
not change under stabilization, then this is in fact a three-manifold
invariant. For example the Casson invariant [1, 37] is defined this way.
However for the definition of Heegaard Floer homology we need some
additional information which is given by diagrams.

Let us start with a handlebody U of genus g.

Definition 2.3. A set of attaching circles (γ1, ..., γg) for U is a
collection of closed embedded curves in Σg = ∂U with the following
properties

• The curves γi are disjoint from each other.
• Σg − γ1 − · · · − γg is connected.
• The curves γi bound disjoint embedded disks in U .

Remark 2.4. The second property in the above definition is equiva-
lent to the property that ([γ1], ..., [γg]) are linearly independent in H1(Σ, Z).

Definition 2.5. Let (Σg, U0, U1) be a genus g Heegaard decompo-
sition for Y . A compatible Heegaard diagram is given by Σg together
with a collection of curves α1, ..., αg, β1, ..., βg with the property that
(α1, ..., αg) is a set of attaching circles for U0 and (β1, ..., βg) is a set of
attaching circles for U1.

Remark 2.6. A Heegaard decomposition of g > 1 admits lots of
different compatible Heegaard diagrams.

In the opposite direction any diagram (Σg, α1, ..., αg, β1, ..., βg) where
the α and β curves satisfy the first two conditions in Definition 2.3 de-
termine uniquely a Heegaard decomposition and therefore a 3-manifold.

2.5. Examples. It is helpful to look at a few examples. The genus
1 Heegaard decomposition of S3 corresponds to a diagram (Σ1, α, β)
where α and β meet transversely in a unique point. S1×S2 corresponds
to (Σ1, α, α).

The lens space L(p, q) has a diagram (Σ1, α, β) where α and β
intersect at p points and in a standard basis x, y ∈ H1(Σ1) = Z ⊕ Z,
[α] = y and [β] = px + qy.

Another example is given in Figure 2. Here we think of S2 as the
plane together with the point at infinity. In the picture the two circles
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Figure 2. A genus 2 Heegaard diagram.

on the left are identified, or equivalently we glue a handle to S2 along
these circles. Similarly we identify the two circles in the right side of
the picture. After this identification the two horizontal lines become
closed circles α1 and α2. As for the two β curves, β1 lies in the plane
and β2 goes through both handles once.

Definition 2.7. We can define a one-parameter family of Heegaard
diagrams by changing the right side of Figure 2. For n > 0 instead of
twisting around the right circle two times as in the picture, twist n
times. When n < 0, twist −n times in the opposite direction. Let Yn

denote the corresponding three-manifold.

2.6. Heegaard moves. While a Heegaard diagram is a good way
to describe Y , the same three-manifold has lots of different diagrams.
There are three basic moves on diagrams that do not change the under-
lying three-manifold. These are isotopy, handle slide and stabilization.
The first two moves can be described for attaching circles γ1, ..., γg for
a given handlebody U :

An isotopy moves γ1, ..., γg in a one parameter family in such a way
that the curves remain disjoint.

During handle slide we choose two of the curves, say γ1 and γ2, and
replace γ1 with γ′

1 provided that γ ′
1 is any simple, closed curve which is

disjoint from the γ1, . . . , γg with the property that γ ′
1, γ1 and γ2 bound

an embedded pair of pants in Σ−γ3− . . .−γg (see Figure 3 for a genus
2 example).
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Figure 3. Handlesliding γ1 over γ2

Proposition 2.8. ([38]) Let U be a handlebody of genus g, and let
(α1, ..., αg), (α′

1, ..., α
′
g) be two sets of attaching circles for U . Then the

two sets can be connected by a sequence of isotopies and handle slides.

The stabilization move is defined as follows. We enlarge Σ by mak-
ing a connected sum with a genus 1 surface Σ′ = Σ#E and replace
{α1, ..., αg} and {β1, ..., βg} by {α1, . . . , αg+1} and {β1, . . . , βg+1} re-
spectively, where αg+1 and βg+1 are a pair of curves supported in E,
meeting transversally in a single point. Note that the new diagram is
compatible with the stabilization of the original decomposition.

Combining Theorem 2.2 and Proposition 2.8 we get the following

Theorem 2.9. Let Y be a closed oriented 3-manifold. Let

(Σg, α1, ..., αg, β1, ..., βg), (Σg′, α
′
1, ..., α

′
g′, β

′
1, ..., β

′
g′)

be two Heegaard diagrams of Y . Then by applying sequences of iso-
topies, handle slides and stabilizations we can change the above dia-
grams so that the new diagrams are diffeomorphic to each other.

2.7. The basepoint. In later sections we will also look at pointed
Heegaard diagrams (Σg, α1, ..., αg, β1, ..., βg, z), where the basepoint z ∈
Σg is chosen in the complement of the curves

z ∈ Σg − α1 − ... − αg − β1 − ... − βg.

There is a notion of pointed Heegaard moves. Here we also allow
isotopy for the basepoint. During isotopy we require that z is disjoint
from the curves. For the pointed handle slide move we require that z
is not in the pair of paints region where the handle slide takes place.
The following is proved in [24].

Proposition 2.10. Let z1 and z2 to be two basepoints. Then the
pointed Heegaard diagrams

(Σg, α1, ..., αg, β1, ..., βg, z1) and (Σg, α1, ..., αg, β1, ..., βg, z2)

can be connected by a sequence of pointed isotopies and handle slides.
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3. Morse functions and Heegaard diagrams

In this section we study a Morse theoretical approach to Heegaard
decompositions. In Morse theory, see [20], [21], one studies smooth
functions on n-dimensional manifolds f : Mn → R. A point P ∈ Y
is a critical point of f if ∂f

∂xi
= 0 for i = 1, ..., n. At a critical point

the Hessian matrix H(P ) is given by the second partial derivatives

Hij = ∂2f
∂xi∂xj

. A critical point P is called non-degenerate if H(P ) is
non-singular.

Definition 3.1. The function f : Mn → R is called a Morse
function if all the critical points are non-degenerate.

Now suppose that f is a Morse function and P is a critical point.
Since H(P ) is symmetric, it induces an inner product on the tangent
space. The dimension of a maximal negative definite subspace is called
the index of P . In other words we can diagonalize H(P ) over the reals,
and index(P ) is the number of negative entries in the diagonal.

Clearly a local minimum of f has index 0, while a local maximum
has index n. The local behavior of f around a critical point is studied
in [20]:

Proposition 3.2. ([20]) Let P be an index i critical point of f .
Then there is a diffeomorphism h between a neighborhood U of 0 ∈ Rn

and a neighborhood U ′ of P ∈ Mn so that

h ◦ f = −
i∑

j=1

x2
j +

n∑

j=i+1

x2
j .

For us it will be benefital to look at a special class of Morse func-
tions:

Definition 3.3. A Morse function f is called self-indexing if for
each critical point P we have f(P ) = index(P ).

Proposition 3.4. [20] Every smooth n-dimensional manifold M
admits a self-indexing Morse function. Furthermore if M is connected
and has no boundary, then we can choose f so that it has unique index
0 and index n critical points.

The following exercises can be proved by studying how the level
sets f−1((∞, t]) change when t goes through a critical value.

Exercise 3.5. If f : Y −→ [0, 3] is a self-indexing Morse function
on Y with one minimum and one maximum, then f induces a Heegaard
decomposition with Heegaard surface Σ = f−1(3/2), and handlebodies
U0 = f−1[0, 3/2], U1 = f−1[3/2, 3].
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Exercise 3.6. Show that if Σ has genus g, then f has g index one
and g index two critical points.

Let us denote the index 1 and 2 critical points of f by P1, ..., Pg and
Q1, ..., Qg respectively.

Lemma 3.7. The Morse function and a Riemannian metric on Y
induces a Heegaard diagram for Y .

Proof. Take the gradient vector field ∇f of the Morse function. For
each point x ∈ Σ we can look at the gradient trajectory of ±∇f that
goes through x. Let αi denote the set of points that flow down to the
critical point Pi and let βi correspond to the points that flow up to Qi.
It follows from Proposition 3.2 and the fact that f is self indexing that
αi, βi are simple closed curves in Σ. It is also easy to see that α1, ..., αg

and β1, ..., βg are attaching circles for U0 and U1 respectively. It follows
that this is a Heegaard diagram of Y compatible to the given Heegaard
decomposition.

4. Symmetric products and totally real tori

For a pointed Heegaard diagram (Σg, α1, ..., αg, β1, ..., βg, z) we can
associate certain configuration spaces that will be used in later sections
in the definition of Heegaard Floer homology. Our ambient space is

Symg(Σg) = Σg × · · · × Σg/Sg ,

where Sg denotes the symmetry group on g letters In other words
Symg(Σg) consists of unordered g-tuple of points in Σg where the same
points can appear more than one times. Although Sg does not act
freely, Symg(Σg) is a smooth manifold. Furthermore a complex struc-
ture on Σg induces a complex structure on Symg(Σg).

The topology of symmetric products of surfaces is studied in [16].

Proposition 4.1. Let Σ be a genus g surface. Then π1(Symg(Σ)) ∼=
H1(Symg(Σ)) ∼= H1(Σ).

Proposition 4.2. Let Σ be a Riemann surface of genus g > 2,
then

π2(Symg(Σ)) ∼= Z.

The generator of S ∈ π2(Symg(Σ)) can be constructed in the follow-
ing way: Take a hyperelliptic involution τ on Σ, then (y, τ(y), z, ..., z)
is a sphere representing S. An explicit calculation gives
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Lemma 4.3. Let S ∈ π2(Symg(Σ)) be the positive generator as
above. Then

〈c1(Symg(Σg)), [S]〉 = 1

Remark 4.4. The small genus examples can be understood as well.
When g = 1 we get a torus and π2 is trivial. Sym2(Σ2) is diffeomorphic
to the real four-dimensional torus blown up at one point. Here π2 is
large but after dividing with the action of π1(Sym2(Σ2)) we get

π′
2(Sym2(Σ2)) ∼= Z

with the generator S as before. 〈c1, [S]〉 = 1 still holds.

Exercise 4.5. Compute π2(Sym2(Σ2).

4.1. Totally real tori, and Vz. Inside Symg(Σg) our attaching
circles induce a pair of smoothly embedded, g-dimensional tori

Tα = α1 × ... × αg and Tβ = β1 × ... × βg .

More precisely Tα consists of those g-tuples of points {x1, ..., xg} for
which xi ∈ αi for i = 1, ..., g.

These tori enjoy a certain compatibility with any complex structure
on Symg(Σ) induced from Σ:

Definition 4.6. Let (Z, J) be a complex manifold, and L ⊂ Z be a
submanifold. Then, L is called totally real if none of its tangent spaces
contains a J-complex line, i.e. TλL ∩ JTλL = (0) for each λ ∈ L.

Exercise 4.7. Let Tα ⊂ Symg(Σ) be the torus induced from a set
of attaching circles α1, ..., αg. Then, Tα is a totally real submanifold of
Symg(Σ) (for any complex structure induced from Σ).

The basepoint z also induce a subspace that we use later:

Vz = {z} × Symg−1(Σg),

which has complex codimension 1. Note that since z is in the comple-
ment of the α and β curves, Vz is disjoint from Tα and Tβ .

We finish the section with the following problems.

Exercise 4.8. Show that

H1(Symg(Σ))

H1(Tα) ⊕ H1(Tβ)
∼=

H1(Σ)

[α1], ..., [αg], [β1], ..., [βg]
∼= H1(Y ; Z).

Exercise 4.9. Compute H1(Yn, Z) for the three-manifolds Yn in
Definition 2.7.
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5. Disks in symmetric products

Let D be the unit disk in C. Let e1, e2 be the arcs in the boundary
of D with Re(z) ≥ 0, Re(z) ≤ 0 respectively.

Definition 5.1. Given a pair of intersection points x,y ∈ Tα∩Tβ ,
a Whitney disk connecting x and y is a continuos map

u : D −→ Symg(Σg)

with the properties that u(−i) = x, u(i) = y, u(e1) ⊂ Tα, u(e2) ⊂ Tβ.
Let π2(x,y) denote the set of homotopy classes of maps connecting x
and y.

The set π2(x,y) is equipped with a certain multiplicative structure.
Note that there is a way to splice spheres to disks:

π′
2(Symg(Σ)) ∗ π2(x,y) −→ π2(x,y).

Also, if we take a disk connecting x to y, and one connecting y to z,
we can glue them, to get a disk connecting x to z. This operation gives
rise to a multiplication

∗ : π2(x,y) × π2(y, z) −→ π2(x, z).

5.1. An obstruction. Let x,y ∈ Tα∩Tβ be a pair of intersection
points. Choose a pair of paths a : [0, 1] −→ Tα, b : [0, 1] −→ Tβ from
x to y in Tα and Tβ respectively. The difference a − b, gives a loop in
Symg(Σ).

Definition 5.2. Let ε(x,y) denote the image of a− b in H1(Y, Z)
under the map given by Exercise 4.8. Note that ε(x,y) is independent
of the choice of the paths a and b.

It is obvious from the definition that if ε(x,y) 2= 0 then π2(x,y)
is empty. Note that ε can be calculated in Σ, using the identification
between π1(Symg(Σ)) and H1(Σ). Specifically, writing x = {x1, . . . , xg}
and y = {y1, . . . , yg}, we can think of the path a : [0, 1] −→ Tα as a
collection of arcs in α1 ∪ . . . ∪ αg ⊂ Σ, whose boundary is given by
∂a = y1 + . . . + yg − x1 − . . . − xg; similarly, the path b : [0, 1] −→ Tβ

can be viewed as a collection of arcs in β1∪. . .∪βg ⊂ Σ, whose boundary
is given by ∂b = y1 + . . .+ yg −x1 − . . .−xg. Thus, the difference a− b
is a closed one-cycle in Σ, whose image in H1(Y ; Z) is the difference
ε(x,y) defined above.

Clearly ε is additive, in the sense that

ε(x,y) + ε(y, z) = ε(x, z).
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Definition 5.3. Partition the intersection points of Tα ∩ Tβ into
equivalence classes, where x ∼ y if ε(x,y) = 0.

Exercise 5.4. Take a genus 1 Heegaard diagram of L(p, q), and
isotope α and β so that they have only p intersection points. Show that
all the intersection points lie in different equivalence classes.

Exercise 5.5. In the genus 2 example of Figure 2 find all the in-
tersection points in Tα ∩ Tβ, (there are 18 of them), and partition the
points into equivalence classes (there are 2 equivalence classes).

5.2. Domains. In order to understand topological disks in Symg(Σg)
it is helpful to study their “shadow” in Σg.

Definition 5.6. Let x,y ∈ Tα ∩ Tβ. For any point w ∈ Σ which
is in the complement of the α and β curves let

nw : π2(x,y) −→ Z
denote the algebraic intersection number

nw(φ) = #φ−1({w} × Symg−1(Σg)).

Note that since Vw = {w} × Symg−1(Σg) is disjoint from Tα and
Tβ, nw is well-defined.

Definition 5.7. Let D1, . . . , Dm denote the closures of the com-
ponents of Σ − α1 − . . . − αg − β1 − . . . − βg. Given φ ∈ π2(x,y) the
domain associated to φ is the formal linear combination of the regions
{Di}m

i=1:

D(φ) =
m∑

i=1

nzi(φ)Di,

where zi ∈ Di are points in the interior of Di. If all the coefficients
nzi(φ) ≥ 0, then we write D(φ) ≥ 0.

Exercise 5.8. Let x,y,p ∈ Tα ∩ Tβ, φ1 ∈ π2(x,y) and φ2 ∈
π2(y,p). Show that

D(φ1 ∗ φ2) = D(φ1) + D(φ2).

Similarly

D(S ∗ φ) = D(φ) +
n∑

i=1

Di ,

where S denotes the positive generator of π2(Symg(Σg)).

The domain D(φ) can be regarded as a two-chain. In the next
exercise we study its boundary.
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Figure 4. Domains of disks in Sym2(Σ)

Exercise 5.9. Let x = (x1, ..., xg), y = (y1, ..., yg) where

xi ∈ αi ∩ βi, yi ∈ αi ∩ βσ−1(i)

and σ is a permutation. For φ ∈ π2(x,y), show that

• The restriction of ∂D(φ) to αi is a one-chain with boundary
yi − xi.

• The restriction of ∂D(φ) to βi is a one-chain with boundary
xi − yσ(i).

Remark 5.10. Informally the above result says that ∂(D(φ)) con-
nects x to y on α curves and y to x on β curves.

Exercise 5.11. Take the genus 2 examples is of Figure 4. Find
disks φ1 and φ2 with D(φ1) = D1 and D(φ2) = D2.

Definition 5.12. Let x,y ∈ Tα ∩ Tβ. If a formal sum

A =
n∑

i=1

aiDi

satisfies that ∂A connects x to y along α curves and connects y to x
along the β curves, we will say that ∂A connects x to y.

When g > 1 the argument in Exercise 5.9 can be reversed:

Proposition 5.13. Suppose that g > 1, x,y ∈ Tα ∩ Tβ. If A
connects x to y then there is a homotopy class φ ∈ π2(x,y) with

D(φ) = A
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Furthermore if g > 2 then φ is uniquely determined by A.

As an easy corollary we have the following

Proposition 5.14. [24] Suppose g > 2. For each x,y ∈ Tα ∩ Tβ,
if ε(x,y) 2= 0, then π2(x,y) is empty; otherwise,

π2(x,y) ∼= Z ⊕ H1(Y, Z).

Remark 5.15. When g = 2 we can define π′
2(x,y) by modding out

π2(x,y) with the relation: φ1 is equivalent to φ2 if D(φ1) = D(φ2). For
ε(x,y) = 0 we have

π′
2(x,y) ∼= Z ⊕ H1(Y, Z).

Note that working with π′
2 is the same as working with homology classes

of disks, and for simplifying notation this is the approach used in [25].

6. Spinc-structures

In order to refine the discussion about the equivalence classes en-
countered in the previous section we will need the notion of Spinc struc-
tures. These structures can be defined in every dimension. For three-
dimensional manifolds it is convenient to use a reformulation of Turaev
[40].

Let Y be an oriented closed 3-manifold. Since Y has trivial Euler
characteristic, it admits nowhere vanishing vector fields.

Definition 6.1. Let v1 and v2 be two nowhere vanishing vector
fields. We say that v1 is homologous to v2 if there is a ball B in Y
with the property that v1|Y −B is homotopic to v2|Y −B. This gives an
equivalence relation, and we define the space of Spinc structures over
Y as nowhere vanishing vector fields modulo this relation.

We will denote the space of Spinc structures over Y by Spinc(Y ).

6.1. Action of H2(Y, Z) on Spinc(Y ). Fix a trivialization τ of the
tangent bundle TY . This gives a one-to-one correspondence between
vector fields v over Y and maps fv from Y to S2.

Definition 6.2. Let µ denote the positive generator of H2(S2, Z).
Define

δτ (v) = f ∗
v (µ) ∈ H2(Y, Z)

Exercise 6.3. Show that δτ induces a one-to-one correspondence
between Spinc(Y ) and H2(Y, Z).

The map δτ is independent of the the trivialization if H1(Y, Z) has no
two-torsion. In the general case we have a weaker property:
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Exercise 6.4. Show that if v1 and v2 are a pair of nowhere van-
ishing vector fields over Y , then the difference

δ(v1, v2) = δτ (v1) − δτ (v2) ∈ H2(Y, Z)

is independent of the trivialization τ , and

δ(v1, v2) + δ(v2, v3) = δ(v1, v3).

This gives an action of H2(Y, Z) on Spinc(Y ). If a ∈ H2(Y, Z)
and v ∈ Spinc(Y ) we define a + v ∈ Spinc(Y ) by the property that
δ(a + v, v) = a. Similarly for v1, v2 ∈ Spinc(Y ), we let v1 − v2 denote
δ(v1, v2).

There is a natural involution on the space of Spinc structures which
carries the homology class of the vector field v to the homology class
of −v. We denote this involution by the map s 3→ s.

There is also a natural map

c1 : Spinc(Y ) −→ H2(Y, Z),

the first Chern class. This is defined by c1(s) = s − s. It is clear that
c1(s) = −c1(s).

6.2. Intersection points and Spinc structures. Now we are
ready to define a map

sz : Tα ∩ Tβ −→ Spinc(Y ),

which will be a refinement of the equivalence classes given by ε(x,y):
Let f be a Morse function on Y compatible with the attaching cir-

cles α1, ..., αg, β1, ..., βg. Then each x ∈ Tα ∩ Tβ determines a g-tuple
of trajectories for ∇f connecting the index one critical points to index
two critical points. Similarly z gives a trajectory connecting the index
zero critical point with the index three critical point. Deleting tubular
neighborhoods of these g +1 trajectories, we obtain the complement of
disjoint union of balls in Y where the gradient vector field ∇f does not
vanish. Since each trajectory connects critical points of different pari-
ties, the gradient vector field has index 0 on all the boundary spheres,
so it can be extended as a nowhere vanishing vector field over Y . Ac-
cording to our definition of Spinc-structures the homology class of the
nowhere vanishing vector field obtained in this manner gives a Spinc

structure. Let us denote this element by sz(x). The following is proved
[24].

Lemma 6.5. Let x,y ∈ Tα ∩ Tβ. Then we have

(1) sz(y) − sz(x) = PD[ε(x,y)].

In particular sz(x) = sz(y) if and only if π2(x,y) is non-empty.
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Exercise 6.6. Let (Σ1, α, β) be a genus 1 Heegaard diagram of
L(p, 1) so that α and β have p intersection points. Using this diagram
Σ1 − α− β has p components. Choose a point zi in each region. Show
that for any x ∈ α ∩ β, we have

szi(x) 2= szj(x)

for i 2= j.

7. Holomorphic disks

A complex structure on Σ induces a complex structure on Symg(Σg).
For a given homotopy class φ ∈ π2(x,y) let M(φ) denote the moduli
space of holomorphic representatives of φ. Note that in order to guar-
antee that M(φ) is smooth, in Lagrangian Floer homology one has to
use appropriate perturbations, see [8], [9], [11].

The moduli space M(φ) admit an R action. This corresponds to
complex automorphisms of the unit disk that preserve i and −i. It is
easy to see that this group is isomorphic to R. For example using the
Riemann mapping theorem change the unit disk to the infinite strip
[0, 1] × iR ⊂ C, where e1 corresponds to 1 × iR and e2 corresponds
0 × iR. Then the automorphisms preserving e1 and e2 correspond the
vertical translations. Now if u ∈ M(φ) then we could precompose u
with any of these automorphisms and get another holomorphic disk.
Since in the definition of the boundary map we would like to count
holomorphic disks we will divide M(φ) by the above R action, and
define the unparametrized moduli space

M̂(φ) =
M(φ)

R .

It is easy to see that the R action is free except in the case when φ is
the homotopy class of the constant map (φ ∈ π2(x,x), with D(φ) = 0).
In this case M(φ) is a single point corresponding to the constant map.

The moduli space M(φ) has an expected dimension called the
Maslov index µ(φ), see [35], which corresponds to the index of an el-
liptic operator. The Maslov index has the following significance: If we
vary the almost complex structure of Symg(Σg) in an n-dimensional
family, the corresponding parametrized moduli space has dimension
n + µ(φ) around solutions that are smoothly cut out by the defining
equation. The Maslov index is additive:

µ(φ1 ∗ φ2) = µ(φ1) + µ(φ2)

and for the homotopy class of the constant map µ is equal to zero.
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Lemma 7.1. ([24]) Let S ∈ π′
2(Symg(Σ)) be the positive generator.

Then for any φ ∈ π2(x,y), we have that

µ(φ+ k[S]) = µ(φ) + 2k.

Proof. It follows from the excision principle for the index that at-
taching a topological sphere Z to a disk changes the Maslov index by
2〈c1, [Z]〉 (see [18]). On the other hand for the positive generator S
we have 〈c1, [S]〉 = 1.

Corollary 7.2. If g = 2 and φ, φ′ ∈ π2(x,y) satisfies

D(φ) = D(φ′)

then µ(φ) = µ(φ′). In particular µ is well-defined on π′
2(x,y).

Lemma 7.3. If M(φ) is non-empty, then D(φ) ≥ 0.

Proof. Let us choose a reference point zi in each region Di. Since Vzi

is a subvariety, a holomorphic disk is either contained in it (which is
excluded by the boundary conditions) or it must meet it non-negatively.

By studying energy bounds, orientations and Gromov limits we
prove in [24]

Theorem 7.4. There is a family of (admissible) perturbations with

the property that if µ(φ) = 1 then M̂(φ) is a compact oriented zero
dimensional manifold. When g = 2, the same result holds for φ ∈
π′

2(x,y) as well.

7.1. Examples. The space of holomorphic disks connecting x,y
can be given an alternate description, using only maps between one-
dimensional complex manifolds.

Lemma 7.5. ([24]) Given any holomorphic disk u ∈ M(φ), there
is a g-fold branched covering space p : D̂ −→ D and a holomorphic map
û : D̂ −→ Σ, with the property that for each z ∈ D, u(z) is the image
under û of the pre-image p−1(z).

Exercise 7.6. Let φ1, φ2 be homotopy classes in Figure 4, with
D(φ1) = D1, D(φ2) = D2. Also let φ0 ∈ π2(y,x) be a class with
D(φ0) = −D1. Show that µ(φ1) = 1, µ(φ2) = 0 and µ(φ0) = −1.
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Figure 5.

For additional examples see Figure 5. The left example is in the
second symmetric product and x2 = y2. The right example is in the
first symmetric product, the α and β curve intersect each other in 4
points. Let φ3, φ4 be classes with D(φ3) = D1, D(φ4) = D2 +D3 +D4.

Exercise 7.7. Show that µ(φ3) = 1 and µ(φ4) = 2.

Exercise 7.8. Use the Riemman mapping theorem to show that
M̂(φ4) is homeomorphic to an open intervall I.

Exercise 7.9. Study the limit of ui ∈ I as ui approaches one of
the ends in I. Show that the limit corresponds to a decomposition

φ4 = φ5 ∗ φ6, or φ4 = φ7 ∗ φ8,

where D(φ5) = D2 + D4, D(φ6) = D3, D(φ7) = D2 + D3 and D(φ8) =
D4.

8. The Floer chain complexes

In this section we will define the various chain complexes corre-
sponding to ĤF , HF+, HF− and HF∞.

We start with the case when Y is a rational homology 3-sphere. Let
(Σ, α1, ..., αg, β1, ..., βg, z) be a pointed Heegaard diagram with genus
g > 0 for Y . Choose a Spinc structure t ∈ Spinc(Y ).

Let ĈF (α, β, t) denote the free Abelian group generated by the
points in x ∈ Tα ∩Tβ with sz(x) = t. This group can be endowed with
a relative grading

(2) gr(x,y) = µ(φ) − 2nz(φ),
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where φ is any element φ ∈ π2(x,y), and µ is the Maslov index.
In view of Proposition 5.14 and Lemma 7.1, this integer is indepen-

dent of the choice of homotopy class φ ∈ π2(x,y).

Definition 8.1. Choose a perturbation as in Theorem 7.4. For
x,y ∈ Tα ∩ Tβ and φ ∈ π2(x,y) let us define c(φ) to be the signed

number of points in M̂(φ), if µ(φ) = 1. If µ(φ) 2= 1 let c(φ) = 0.

Let
∂ : ĈF (α, β, t) −→ ĈF (α, β, t)

be the map defined by:

∂x =
∑

{y∈Tα∩Tβ , φ∈π2(x,y)
∣∣sz(y)=t, nz(φ)=0}

c(φ) · y

By analyzing the Gromov compactification of M̂(φ) for nz(φ) =

0 and µ(φ) = 2 it is proved in [24] that (ĈF (α, β, t), ∂) is a chain
complex; i.e. ∂2 = 0.

Definition 8.2. The Floer homology groups ĤF (α, β, t) are the

homology groups of the complex (ĈF (α, β, t), ∂).

One of the main results of [24] is that the homology group ĤF (α, β, t)
is independent of the Heegaard diagram, the basepoint and the other
choices in the definition (complex structures, perturbations). After
analyzing the effect of isotopies, handle slides and stabilizations, it is
proved in [24] that under pointed isotopies, pointed handle slides, and

stabilizations we get chain homotopy equivalent complexes ĈF (α, β, t).
This together with Theorem 2.9, and Proposition 2.10 imples:

Theorem 1. ([24]) Let (Σ, α, β, z) and (Σ′, α′, β′, z′) be pointed
Heegaard diagrams of Y , and t ∈ Spinc(Y ). Then the homology groups

ĤF (α, β, t) and ĤF (α′, β′, t) are isomorphic.

Using the above theorem we can at last define ĤF :

ĤF (Y, t) = ĤF (α, β, t).

8.1. CF∞(Y ). The definition in the previous section uses the base-
point z in a special way: in the boundary map we only count holomor-
phic disks that are disjoint from the subvariety Vz.

Now we study a chain complex where all the holomorphic disks are
used (but we still record the intersection number with Vz):
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Let CF∞(α, β, t) be the free Abelian group generated by pairs [x, i]
where sz(x) = t, and i ∈ Z is an integer. We give the generators a
relative grading defined by

gr([x, i], [y, j]) = gr(x,y) + 2i − 2j.

Let
∂ : CF∞(α, β, t) −→ CF∞(α, β, t)

be the map defined by:

(3) ∂[x, i] =
∑

y∈Tα∩Tβ

∑

φ∈π2(x,y)

c(φ) · [y, i − nz(φ)].

There is an isomorphism U on CF∞(α, β, t) given by

U([x, i]) = [x, i − 1]

that decreases the grading by 2.
It is proved in [23] that for rational homology three-spheres HF∞(Y, t)

is always isomorphic to Z[U, U−1]. So clearly this is not an interesting
invariant. Luckily the base-point z together with Lemma 7.3 induces
a filtration on CF∞(α, β, t) and that produces more subtle invariants.

8.2. CF+(α, β, t) and CF−(α, β). Let CF−(α, β, t) denote the
subgroup of CF∞(α, β, t) which is freely generated by pairs [x, i],
where i < 0. Let CF +(α, β, t) denote the quotient group

CF∞(α, β, t)/CF−(α, β, t)

Lemma 8.3. The group CF−(α, β, t) is a subcomplex of CF∞(α, β, t),
so we have a short exact sequence of chain complexes:

0 −−−→ CF−(α, β, t)
ι−−−→ CF∞(α, β, t)

π−−−→ CF +(α, β, t) −−−→ 0.

Proof. If [y, j] appears in ∂([x, i]) then there is a homotopy class
φ(x,y) with M(φ) non-empty, and nz(φ) = i − j. According to
Lemma 7.3 we have D(φ) ≥ 0 and in particular i ≥ j.

Clearly, U restricts to an endomorphism of CF−(α, β, t) (which
lowers degree by 2), and hence it also induces an endomorphism on the
quotient CF +(α, β, t).

Exercise 8.4. There is a short exact sequence

0 −−−→ ĈF (α, β, t)
ι−−−→ CF +(α, β, t)

U−−−→ CF +(α, β, t) −−−→ 0,

where ι(x) = [x, 0].
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Definition 8.5. The Floer homology groups HF +(α, β, t) and
HF−(α, β, t) are the homology groups of (CF +(α, β, t), ∂) and
(CF−(α, β, t), ∂) respectively.

It is proved in [24] that the chain homotopy equivalences under

pointed isotopies, handle slides and stabilizations for ĈF can be lifted
to filtered chain homotopy equivalences on CF∞ and in particular the
corresponding Floer homologies are unchanged. This allows us to define

HF±(Y, t) = HF±(α, β, t).

8.3. Three manifolds with b1(Y ) > 0. When b1(Y ) is positive,
then there is a technical problem due to the fact that π2(x,y) is larger.
In definition of the boundary map we have now infinitely many homo-
topy classes with Maslov index 1. In order to get a finite sum we have
to prove that only finitely many of these homotopy classes support
holomorphic disks. This is achieved through the use of special Hee-
gaard diagrams together with the positivity property of Lemma 7.3,
see [24]. With this said, the constructions from the previous subsec-
tions apply and give the Heegaard Floer homology groups. The only
difference is that when the image of c1(t) in H2(Y, Q) is non-zero, the
Floer homologies no longer have relative Z grading.

9. A few examples

We study Heegaard Floer homology for a few examples. To simplify
things we deal with homology three spheres. Here H1(Y, Z) = 0 so there
is a unique Spinc-structure. In [27] we show how to use maps on HF±

induced by smooth cobordisms to lift the relative grading to absolute
grading.

For Y = S3 we can use a genus 1 Heegaard diagram. Here α
and β intersect each other in a unique point x. It follows that CF + is
generated [x, i] with i ≥ 0. Since gr[x, i]−gr[x, i−1] = 2, the boundary
map is trivial so HF +(S3) is isomorphic with Z[U, U−1]/Z[U ] as a Z[U ]
module. The absolute grading is determined by

gr([x, 0]) = 0.

A large class of homology three-spheres is provided by Brieskorn
spheres: Recall that if p, q, and r are pairwise relatively prime integers,
then the Brieskorn variety V (p, q, r) is the locus

V (p, q, r) = {(x, y, z) ∈ C3
∣∣xp + yq + zr = 0}
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Definition 9.1. The Brieskorn sphere Σ(p, q, r) is the homology
sphere obtained by V (p, q, r) ∩ S5 (where S5 ⊂ C3 is the standard 5-
sphere).

The simplest example is the Poincare sphere Σ(2, 3, 5).

Exercise 9.2. Show that the diagram in Definition 2.7 with n = 3
is a Heegaard diagram for Σ(2, 3, 5).

Unfortunately in this Heegaard diagram there are lots of genera-
tors (21) and computing the Floer chain complex directly is not an
easy task. Instead of this direct approach one can study how the Hee-
gaard Floer homologies change when the three-manifold is modified by
surgeries along knots. In [27] we use this surgery exact sequences to
prove

Proposition 9.3.

HF+
k (Σ(2, 3, 5)) =

{
Z if k is even and k ≥ 2
0 otherwise

Moreover,

U : HF+
k+2(Σ(2, 3, 5)) −→ HF +

k (Σ(2, 3, 5))

is an isomorphism for k ≥ 2.

This means that as a relatively graded Z[U ] module HF +((Σ(2, 3, 5))
is isomorphic to HF +(S3), but the absolute grading still distinguishes
them.

Another example is provided by Σ(2, 3, 7). (Note that this three
manifold corresponds to the n = 5 diagram when we switch the role of
the α and β circles.)

Proposition 9.4.

(4) HF+
k (Σ(2, 3, 7)) =






Z if k is even and k ≥ 0
Z if k = −1
0 otherwise

For a description of HF +(Σ(p, q, r)) see [29], and also [22], [36].

10. Knot Floer homology

In this section we study a version of Heegaard Floer homology that
can be applied to knots in three-manifolds. Here we will restrict our
attention to knots in S3. For a more general discussion see [31] and
[34].

Let us consider a Heegaard diagram (Σg, α1, ..., αg, β1, ..., βg) for S3

equipped with two basepoints w and z. This data gives rise to a knot
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in S3 by the following procedure. Connect w and z by a curve a in
Σg − α1 − ... − αg and also by another curve b in Σg − β1 − ... − βg.
By pushing a and b into U0 and U1 respectively, we obtain a knot
K ⊂ S3. We call the data (Σg, α, β, w, z) a two-pointed Heegaard
diagram compatible with the knot K.

A Morse theoretic interpretation can be given as follows. Fix a
metric on Y and a self-indexing Morse function so that the induced
Heegaard diagram is (Σg, α1, ..., αg, β1, ..., βg). Then the basepoints w, z
give two trajectories connecting the index 0 and index 3 critical points.
Joining these arcs together gives the knot K.

Lemma 10.1. Every knot can be represented by a two-pointed Hee-
gaard diagram.

Proof. Fix a height function h on K so that for the two critical
points A and B, we have h(A) = 0 and h(B) = 3. Now extend h to
a self-indexing Morse function from K ⊂ Y to Y so that the index 1
and 2 critical points are disjoint from K, and let z and w be the two
intersection points of K with the Heegaard surface h̃−1(3/2).

A straightforward generalization of ĈF is the following.

Definition 10.2. Let K be a knot in S3 and (Σg, α1, ..., αg, β1, ..., βg, z, w)
be a compatible two-pointed Heegaard diagram. Let C(K) be the free
abelian group generated by the intersection points x ∈ Tα ∩ Tβ. For a
generic choice of almost complex structures let ∂K : C(K) −→ C(K)
be given by

(5) ∂K(x) =
∑

y

∑

{φ∈π2(x,y)|µ(φ)=1, nz(φ)=nw(φ)=0}

c(φ) · y

Proposition 10.3. ([31], [34]) (C(K), ∂K) is a chain complex. Its
homology H(K) is independent of the choice of two-pointed Heegaard
diagrams representing K, and the almost complex structures.

10.1. Examples. For the unknot U we can use the standard genus
1 Heegaard diagram of S3, and get H(U) = Z.

Exercise 10.4. Take the two-pointed Heegaard diagram in Fig-
ure 6. Show that the corresponding knot is trefoil T2,3.

Exercise 10.5. Find all the holomorphic disks in Figure 6, and
show that H(T2,3) has rank 3.
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Figure 6.

10.2. A bigrading on C(K). For C(K) we define two gradings.
These correspond to functions:

F, G : Tα ∩ Tβ −→ Z.

We start with F :

Definition 10.6. For x,y ∈ Tα ∩ Tβ let

f(x,y) = nz(φ) − nw(φ),

where φ ∈ π2(x,y).

Exercise 10.7. Show that for x,y,p ∈ Tα ∩ Tβ we have

f(x,y) + f(y,p) = f(x,p).

Exercise 10.8. Show that f can be lifted uniquely to a function
F : Tα ∩ Tβ −→ Z satisfying the relation

(6) F (x) − F (y) = f(x, y),

and the additional symmetry

#{x ∈ Tα ∩ Tβ

∣∣F (x) = i} ≡ #{x ∈ Tα ∩ Tβ

∣∣F (x) = −i} (mod 2)

for all i ∈ Z

The other grading comes from the Maslov grading.
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Definition 10.9. For x,y ∈ Tα ∩ Tβ let

g(x,y) = µ(φ) − 2nw(φ),

where φ ∈ π2(x,y).

In order to lift g to an absolute grading we use the one-pointed
Heegaard diagram (Σg, α, β, w). This is a Heegaard diagram of S3. It

follows that the homology of ĈF (Tα, Tβ, w) is isomorphic to Z. Using
the normalization that this homology is supported in grading zero we
get a function

G : Tα ∩ Tβ −→ Z
that associates to each intersection points its absolute grading in
ĈF (Tα, Tβ, w). It also follows that G(x) − G(y) = g(x,y).

Definition 10.10. Let Ci,j denote the free Abelian group generated
by those intersection points x ∈ Tα ∩ Tβ that satisfy

i = F (x), j = G(x).

The following is straightforward:

Lemma 10.11. For a two-pointed Heegaard diagram corresponding
to a knot K in S3 decompose C(K) as

C(K) =
⊕

i,j

Ci,j.

Then ∂K(Ci,j) is contained in Ci,j−1.

As a corollary we can decompose H(K):

H(K) =
⊕

i,j

Hi,j(K).

Since the chain homotopy equivalences of C(K) induced by (two-pointed)
Heegaard moves respects both gradings it follows that Hi,j(K) is also
a knot invariant.

11. Kauffman states

When studying knot Floer homology it is natural to consider a
special diagram where the intersection points correspond to Kauffman
states.

Let K be a knot in S3. Fix a projection for K. Let v1, ..., vn denote
the double points in the projection. If we forget the pattern of over
and under crossings in the diagram we get an immersed circle C in the
plane.
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Figure 7.

0 00 0

−1/2

1/2

1/2

−1/2

Figure 8. The definition of a(ci) for both kinds of crossings.

Fix an edge e which appears in the closure of the unbounded region
A in the planar projection. Let B be the region on the other side of
the marked edge.

Definition 11.1. ([14]) A Kauffman state (for the projection and
the distinguished edge e) is a map that associates for each double point
vi one of the four corners in such a way that each component in S2 −
C − A − B gets exactly one corner.

Let us write a Kauffman state as (c1, ..., cn), where ci is a corner for
vi.

For an example see Figure 7 that shows the Kauffman states for
the trefoil. In that picture the black dots denote the corners, and the
white circle indicates the marking.

Exercise 11.2. Find the Kauffman states for the T2,2n+1 torus
knots, (using a projection with 2n + 1 double points).

11.1. Kauffman states and Alexander polynomial. The Kauff-
man states could be used to compute the Alexander polynomial for the
knot K. Fix an orientation for K. Then for each corner ci we define
a(ci) by the formula in Figure 8, and B(ci) by the formula in Figure 9.

Theorem 11.3. ([14]) Let K be knot in S3, and fix an oriented
projection of K with a marked edge. Let K denote the set of Kauffman
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0
0 0
1

Figure 9. The definition of B(ci).

states for the projection. Then the polynomial

∑

c∈K

n∏

i=1

(−1)B(ci)T a(ci)

is equal to the symmetrized Alexander polynomial ∆K(T ) of K.

12. Kauffman states and Heegaard diagrams

Proposition 12.1. Let K be a knot and S3. Fix a knot projec-
tion for K together with a marked edge. Then there is a Heegaard
diagram for K, where the generators are in one-to-one correspondence
with Kauffman states of the projection.

Proof. Let C be the immersed circle as before. A regular neighbor-
hood nd(C) is a handlebody of genus n+1. Clearly S3 −nd(C) is also
a handlebody, so we get a Heegaard decomposition of S3. Let Σ be the
oriented boundary of S3 − nd(C). This will be the Heegaard surface.
The complement of C in the plane has n + 2 components. For each
region, except for A, we associate an α curve, which is the intersection
of the region with Σ. It is easy to see Σ− α1 − ... − αn+1 is connected
and all αi bound disjoint disks in S3 − nd(C).

Fix a point in the edge e and let βn+1 be the meridian for K
around this point. The curves β1, ..., βn correspond to the double points
v1, ..., vn, see Figure 10. As for the basepoints, choose w and z on the
two sides of βn+1. There is a small arc connecting z and w. This arc is
in the complement of the α curves. We can also choose a long arc from
w to z in the complement of the β curves that travels along the knot
K. It follows that this two-pointed Heegaard diagram is compatible to
K.

In order to see the relation between Tα ∩ Tβ and Kauffman states
note that in a neighborhood of each vi, there are at most four intersec-
tion points of βi with circles corresponding to the four regions which
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Figure 10. Special Heegaard diagram for knot
crossings. At each crossing as pictured on the left, we
construct a piece of the Heegaard surface on the right
(which is topologically a four-punctured sphere). The
curve β is the one corresponding to the crossing on the
left; the four arcs α1, ..., α4 will close up.

contain vi, see Figure 10. Clearly these intersection points are in one-
to-one correspondence with the corners. This property together with
the observation that βn+1 intersects only the α curve of region B fin-
ishes the proof.

13. A combinatorial formula

In this section we describe F (x) and G(x) in terms of the knot
projection. Both of these function will be given as a state sum over
the corners of the corresponding Kauffman state. For a given corner ci

we use a(ci) and b(ci), where a(ci) given as before, see Figure 8, and
b(ci) is defined in Figure 11. Note that b(ci) and B(ci) are congruent
modulo 2. The following result is proved in [28].

Theorem 13.1. Fix an oriented knot projection for K together with
a distinguished edge. Let us fix a two-pointed Heegaard diagram for K
as above. For x ∈ Tα∩Tβ let (c1, ..., cn) be the corresponding Kauffman
state. Then we have

F (x) =
n∑

i=1

a(ci) G(x) =
n∑

i=1

b(ci).
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0 00 0

00

−1 1

Figure 11. Definition of b(ci).

Exercise 13.2. Compute Hi,j for the trefoil, see Figure 7, and
more generally for the T2,2n+1 torus knots.

13.1. The Euler characteristic of knot Floer homology. As
an obvious consequence of Theorem 13.1 we have the following

Theorem 13.3.

(7)
∑

i

∑

j

(−1)j · rk(Hi,j(K)) · T i = ∆K(T ).

It is interesting to compare this with [1], [19], and [6].

13.2. Computing knot Floer homology for alternating knots.
It is clear from the above formulas that if K has an alternating pro-
jection, then F (x) − G(x) is independent of the choice of state x. It
follows that if we use the chain complex associated to this Heegaard
diagram, then there are no differentials in the knot Floer homology,
and indeed, its rank is determined by its Euler characteristic. Indeed,
by calculating the constant, we get the following result, proved in [28]:

Theorem 13.4. Let K ⊂ S3 be an alternating knot in the three-
sphere, write its symmetrized Alexander polynomial as

∆K(T ) =
n∑

i=−n

aiT
i

and let σ(K) denote its signature. Then, Hi,j(K) = 0 for j 2= i + σ(K)
2 ,

and

Hi,i+σ(K)/2
∼= Z|ai|.

We see that knot Floer homology is relatively simple for alternat-
ing knots. For general knots however the computation is more subtle
because it involves counting holomorphic disks. In the next section we
study more examples.
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Figure 12.

14. More computations

For knots that admit two-pointed genus 1 Heegaard diagrams com-
puting knot Floer homology is relatively straightforward. In this case
we study holomorphic disks in the torus. For an interesting example
see Figure 12. The two empty circles are glued along a cylinder, so
that no new intersection points are introduced between the curve α
(the darker curve) and β (the lighter, horizontal curve).

Exercise 14.1. Compute the Alexander polynomial of K in Figure
12.

Exercise 14.2. Compute the knot Floer homology of K in Figure
12.

Another special class is given by Berge knots [2]. These are knots
that admit lens space surgeries.

Theorem 14.3. ([26]) Suppose that K ⊂ S3 is a knot for which
there is a positive integer p so that p surgery S3

p(K) along K is a lens
space. Then, there is an increasing sequence of non-negative integers

n−m < ... < nm
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with the property that ns = −n−s, with the following significance. For
−m ≤ s ≤ m we let

δi =






0 if s = m
δs+1 − 2(ns+1 − ns) + 1 if m − s is odd
δs+1 − 1 if m − s > 0 is even,

Then for each s with |s| ≤ m we have

Hns,δs(K) = Z
Furthermore for all other values of i, j we have Hi,j(K) = 0.

For example the right-handed (p, q) torus knot admit lens space
surgeries with slopes pq ± 1, so the above theorem gives a quick com-
putation for Hi,j(Tp,q).

14.1. Relationship with the genus of K. A knot K ⊂ S3 can
be realized as the boundary of an embedded, orientable surface in S3.
Such a surface is called a Seifert surface for K, and the minimal genus
of any Seifert surface for K is called its Seifert genus, denoted g(K).
Clearly g(K) = 0 if and only if K is the unknot. The following theorem
is proved in [30].

Theorem 14.4. For any knot K ⊂ S3, let

deg Hi,j(K) = max{i ∈ Z
∣∣ ⊕j Hi,j(K) 2= 0}

denote the degree of the knot Floer homology. Then

g(K) = deg Hi,j(K).

In particular knot Floer homology distinguishes every non-trivial knot
from the unknot.

For more results on computing knot Floer homology see [33], [34]
[31] [12], [32], [13], and [5].
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[28] P. S. Ozsváth and Z. Szabó. Heegaard Floer homology and alternating knots.
Geom. Topol., 7:225–254, 2003.
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